PEMANFAATAN PETA GEOLOGI UNTUK PERTAMBANGAN

Sukmandaru Prihatmoko
Masyarakat Geologi Ekonomi Indonesia (MGEI)

Yogyakarta, 21 September 2012
TALK OUTLINE

1. Mineral Exploration Process and Geology Map

2. Key Issues in Mineral Exploration – related to Geology Map

3. Suggestions
MINERAL EXPLORATION PROCESS

<table>
<thead>
<tr>
<th>Time</th>
<th>Area of Interest</th>
<th>Odds of finding economic deposit</th>
<th>Typical Stage</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-6 months</td>
<td>100-10,000Km²</td>
<td>$2-5 <1:100,000</td>
<td>Area Selection</td>
<td>• In-house expertise</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-6 months</td>
<td>• Published data review</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Mineral deposit models</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Literature studies</td>
</tr>
<tr>
<td>3-12 months</td>
<td>100-1,000Km²</td>
<td>$100-500 >1:1,000</td>
<td>Reconnaissance</td>
<td>• Geology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Geochemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Image interpretation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Geophysics</td>
</tr>
<tr>
<td>6-18 months</td>
<td>10-50Km²</td>
<td>$1000-5000 >1:100</td>
<td>General Survey</td>
<td>• Geology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Prospecting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Geochemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Geophysics</td>
</tr>
<tr>
<td>1-2 years</td>
<td>2-5Km²</td>
<td>$500,000-1 million >1:10</td>
<td>Exploration</td>
<td>• Geology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Drilling</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Geochemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Geophysics</td>
</tr>
<tr>
<td>2-3 years</td>
<td>1-3Km²</td>
<td>$3-1 million >1:2</td>
<td>Detailed Exploration</td>
<td>• Geology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Drilling</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Resource estimation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Metallurgy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Geotechnical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Mine design</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Environmental</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Financial</td>
</tr>
<tr>
<td>3-5 years</td>
<td></td>
<td>>$250 million >1:2</td>
<td>Feasibility, Construction, Start of Mining</td>
<td>• Geology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Drilling</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Resource estimation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Metallurgy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Geotechnical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Mine design</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Environmental</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Financial</td>
</tr>
</tbody>
</table>
TYPICAL STAGES IN MINERAL EXPLORATION

1. **Area Selection:** to select regions with favorable mineral potential and secure exploration/mining license

 - Methods: in-house expertise, published data review, mineral deposit models, literature study
 - Geology Map used - 1:1,000,000 to 1:5,000,000
TYPICAL STAGES IN MINERAL EXPLORATION

1. **Area Selection:** example....(1)

COMMON DEPOSIT TYPES – COMMODITIES – HOST ROCKS

- Porphyry, skarn, epithermal, sediment hosted Au, VMS – MAGMATIC ARCS
- Ni laterite – OPHIOLITES
- Bauxite – OLD PLUTONIC ROCKS
- Tin – OLD PLUTONIC ROCKS (S-Type Granite)
- Mesothermal Au – METAMORPHIC COMPLEXES
- Iron sand – COASTAL AREA OF MAGMATIC ARCS

UNCONVENTIONAL DEPOSIT TYPES

- Orogenic Au – SUTURE ZONES, METAMORPHIC COMPLEXES
- Sedex Pb-Zn – OLD SEDIMENTARY BASINS (pre-Tertiary)
- IOCG – OLD ALKALINE PLUTONIC ROCKS (?)
- REE – ??
TYPICAL STAGES IN MINERAL EXPLORATION

1. **Area Selection:** example....(2)

Porphyry, skarn, epithermal, sediment hosted Au, VMS – MAGMATIC ARCS

Tertiary Plutonics and Volcanics (Djaswadi & Yudawinata, 1995)
TYPICAL STAGES IN MINERAL EXPLORATION

1. **Area Selection**: example....(3)

Ni Laterites – OPHIOLITES

Ophiolite Belts (Djaswadi & Yudawinata, 1995)
TYPICAL STAGES IN MINERAL EXPLORATION

1. **Area Selection:** to select regions with favorable mineral potential and secure exploration/mining license

2. **Reconnaissance:** to identify mineralized areas and screen out those not worth further investigation

 - **Methods:** geology, geochemistry, image interpretation, geophysics
 - **Geology Map used:** 1:100,000 to 1:1,000,000
2. **Reconnaissance**: example.... (1)

Image Interpretation

Geophysics – Gravity *(Untung & Sato, 1978)*
2. **Reconnaissance:** example.... (2)

Geology *(PSG/ P3G, various years)*

Geochemistry *(stream sediment prospecting)*
TYPICAL STAGES IN MINERAL EXPLORATION

1. **Area Selection:** to select regions with favorable mineral potential and secure exploration/mining license

2. **Reconnaissance:** to identify mineralized areas and screen out those not worth further investigation

3. **General Survey:** to locate, sample, and outline mineralized zones in the field, and screen out those not worth further investigation

 - **Methods:** geology, image interpretation, prospecting, geochemistry, geophysics
 - **Geology Map used:** 1:10,000 to 1:100,000
3. **General Survey:** example......(1)

- **Geological Prospecting**
- **Geochemistry – Stream Sediment Prospecting**
- **Geophysics – Airborne Magnetic**
3. **General Survey**: example......(2)

Image/ Air Photo Interpretation

Geology Map

Enlarged from Geology of Sheet Cikarang, 1 : 100,000
(Sudana & Santosa, 1992)
1. **Area Selection:** to select regions with favorable mineral potential and secure exploration/mining license

2. **Reconnaissance:** to identify mineralized areas and screen out those not worth further investigation

3. **General Survey:** to locate, sample, and outline mineralized zones in the field, and screen out those not worth further investigation

4. **Exploration:** to preliminary define deposits in 3D (by scout drilling), estimate indicated resources, and screen out those not worth further investigation

- **Methods:** geology, drilling, geochemistry, geophysics
- **Geology Map used:** 1:1,000 to 1:10,000
4. **Exploration:** example......(1)

- **Geological Mapping**
- **Trenching**
- **Geochemistry – Soil Sampling**
- **Scout Drilling**
- **Geophysics – Groundmag**
4. Exploration: example.....(2)
TYPICAL STAGES IN MINERAL EXPLORATION

1. **Area Selection**: to select regions with favorable mineral potential and secure exploration/mining license

2. **Reconnaissance**: to identify mineralized areas and screen out those not worth further investigation

3. **General Survey**: to locate, sample, and outline mineralized zones in the field, and screen out those not worth further investigation

4. **Exploration**: to preliminary define deposits in 3D (by scout drilling), estimate indicated resources, and screen out those not worth further investigation

5. **Detailed Exploration**: to delineate ore bodies in detail, estimate measured resources, provide sufficient data for reserve estimation and for making decision whether to proceed to feasibility study

- **Methods**: geology, drilling, resource estimate, metallurgy, geotechnical, mine design, environmental, financial
- **Geology Map used**: 1:100 to 1:1,000
5. **Detailed Exploration:** example(1)

Drilling – Logging - Modelling
5. **Detailed Exploration**: example(2)

Detailed Map 1 : 1,000
KEY ISSUES IN MINERAL EXPLORATION – related to Geology Map

1. Various commodity targets → various geology and tectonic environment
 • Igneous – sedimentary – metamorphic rocks
 • Magmatic arc – metamorphic complex – sedimentary basin – suture zone

2. Various geological maps - depending on the exploration stages
 • 1 : 5,000,000 for regional area selection – 1 : 100 in mining operation
 • Reliable base map – very essential
PROBLEMATIKA – (beberapa contoh)

1. Volcanostratigraphy – Formasi Semilir (Pegunungan Selatan)
(Surono et al, 1992)
PROBLEMATIKA – (beberapa contoh)

1. Volkanostratigrafi – Formasi Semilir (Pegunungan Selatan)

2. Rekonsiliasi antar lembar peta
Peta Geologi 1 : 100.000 Lembar Sindangbarang, Bandung, Cianjur dan Garut
Peta Geologi 1 : 100.000 Lembar Arjawinangun dan Tasikmalaya
PROBLEMATIKA – (beberapa contoh)

1. Volkanostratigrafi – Formasi Semilir (Pegunungan Selatan)

2. Rekonsiliasi antar lembar peta

3. Peta dasar
Problem Peta Dasar

Datum/ sistem koordinat peta geologi vs peta dasar (?)
SARAN-SARAN DAN MASUKAN MGEI-IAGI (1)

1. Volkanostratigrafi – perlu diterapkan
 • Piroklastik - Volkaniklastik – Epiklastik VS Batuan Sedimen (tufaan)
 • Volkaniklastik laut dangkal/ danau vs sedimen kipas laut dalam

2. Perhatian/ penekanan pada “batuan intrusi”
 • Lokasi dan penyebaran
 • Jenis batuan
 • Tipe intrusi (intrusi dalam vs sub-volkanik)

3. Litogeokimia batuan beku (intrusi dan lava) – dan interpretasinya

4. Perhatian pada struktur geologi
 • Lebih detil dan komprehensif – berdasar data lapangan maupun data interpretasi citra (foto udara, satelit, SRTM, dll)
 • Rekonsiliasi struktur permukaan dan bawah permukaan
5. *Peta dasar standard – sama dengan yg dipakai di instansi lain (Bakosurtanal, Kehutanan dll)*

6. **Rekonsiliasi antar lembar peta:**
 - *Batas Formasi/ satuan batuan termasuk nama Formasi*
 - *Struktur geologi*

7. **Format Digital** *(isu: hak cipta dan penggandaan ilegal?)*
Terima kasih